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Abstract

Cancer remains to be one of the leading causes of death in the United States and around the world.

The advent of modern drug-targeted therapies has undeniably improved cancer patients’ cares.

However, advanced metastasized cancer remains untreatable. Hence, continued searching for a

safer and more effective chemoprevention and treatment is clearly needed for the improvement of

the efficiency and to lower the treatment cost for cancer care. Cancer chemoprevention with

natural phytochemical compounds is an emerging strategy to prevent, impede, delay, or cure

cancer. This review summarizes the latest research in cancer chemoprevention and treatment using

the bioactive components from natural plants. Relevant molecular mechanisms involved in the

pharmacological effects of these phytochemicals are discussed. Pharmaceutical developmental

challenges and opportunities in bringing the phytochemicals into the market are also explored. The

authors wish to expand this research area not only for their scientific soundness, but also for their

potential druggability.
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1. Introduction

Natural plants have been used to prevent and to treat various diseases for thousands of years.

The ancient Chinese emperor, the Red Emperor, or Shen Nung, compiled the first medicinal

herbal literature, Pentsao in 2,800 BC [1]. In dealing with diseases, prevention is

considered a superior approach. As illustrated by the Huang-Di Nei-Jing, a manuscript

believed being written by the ancient Chinese emperor, the Yellow Emperor, “The Saint

treats those ill-to-be rather than those being ill, and cares for those in normality rather than
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those in chaoses. Drug a disease after it’s developed, or quench a chaos after it’s evident, is

same as dig a well when in thirsty, or casting a sword in a battle — Is that somewhat late?”

There are excellent sources of bioactive components exerting their health beneficial effects,

and very often, these sources are materials for gourmet food consumptions. Certain

bioactive components from the plants have been confirmed for their anti-cancer activities.

There is an estimate that approximately 50-60% of cancer patients in the United States

utilize agents derived from different parts of plants or nutrients (complementary and

alternative medicine), exclusively or concomitantly with traditional therapeutic regimen

such as chemotherapy and/or radiation therapy [2]. These include curcumin from tumeric,

genistein from soybean, tea polyphenols from green tea, resveratrol from grapes,

sulforaphane from broccoli, isothiocyanates from cruciferous vegetables, silymarin from

milk thistle, diallyl sulfide from garlic, lycopene from tomato, rosmarinic acid from
rosemary, apigenin from parsley, and gingerol from gingers, just to name a few.

Various review articles summarized natural phytochemicals and their anti-cancer effects. In

recent years, some of these reviews touched the general overview for the bioactive aspect for

phytochemical compounds [3-12], or specific compounds such as Vitamin E from plant oil

[13-15], boron-rich natural compound [16], hydroxytyrosol from virgin olive oil [17],

resveratrol from grapes [18], phytoestrogens most notably from soybean [19, 20], or EGCG

from green tea polyphenols [21], while the others are more specific for certain cancers, e.g.,

colorectal cancer [22, 23], breast cancer [14, 24], head and neck cancer [25], pancreatic

cancer [26], prostate cancer [27], or protein targets and pathway mechanisms, such as Nrf2

[28], COX-2 [29], PLK1 [30], angiogenesis [31]. In this review, we will provide a

comprehensive summary for the current status of the research and challenges in this area

[32].

2. Phytochemicals used as cancer chemopreventive and treatment agents

2.1 Apigenin from parsley

Apigenin is a flavone present in vegetables such as parsley, celery, chamomile [33], and

Egyptian plant Moringa peregrina [34]. It demonstrates cytotoxic activities against breast

cancer cell lines (MCF 7), colon cell line (HCT 116), and its cytotoxic activity is

comparable to that of doxorubicin.[34]. Apigenin is also being considered as a mediator for

chemoprevention in the cancerous process and induces a process of autophagia but may

induce resistance against chemotherapy [35]. It induces apoptosis in human colon cancer

cells [36, 37], reduces azoxymethane (AOM) induced aberrant crypt foci (ACF) formation

in male Sprague-Dawley rats, and increases apoptosis which may contribute to the colon

cancer prevention [38]. Apigenin affects leptin/leptin receptor pathway, and induces cell

apoptosis in lung adenocarcinoma cell line [39]. It also increases melanogenesis in B16 cells

by activating the p38 MAPK pathway at least partially and suggests that apigenin or its

derivatives may potentially be used for treating hypopigmentation disorders [40]. Apigenin

has been shown to be one of the beneficial compounds in various stages of carcinogenesis.

In a recent review by Clere et al, the preventive and therapeutic effects of Apigenin and

other flavonoids was summarized to facilitate the extrapolation from animal studies to

human [41].
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2.2 Curcumin from turmeric

Curcumin (diferuloylmethane) is the major components of popular Indian spice turmeric,

Curcuma longa L., a member of the ginger family. Its anti-cancer effects have been studied

for colon cancer, breast cancer [42], lung metastases, and brain tumor [43].

Curcumin’s anticancer effect is attributed to its ability to induce apoptosis in cancer cells

without cytotoxic effects on healthy cells, which is very attractive to cancer research

scientists. Curcumin interferes with NF-κB [44], which connects with inflammatory diseases

including cancer [45]. Curcumin was able to dissociate raptor from mTOR, inhibit mTOR

complex I and might represent a new class of mTOR inhibitor [46]. Ravindran et al

suggested that curcumin modulates growth of tumor cells through regulation of multiple cell

signaling pathways including cell proliferation pathway (cyclin D1, c-myc), cell survival

pathway (Bcl-2, Bcl-x, cFLIP, XIAP, c-IAP1), caspase activation pathway (caspase-8, 3, 9),

tumor suppressor pathway (p53, p21), death receptor pathway (DR4, DR5), mitochondrial

pathways, and protein kinase pathway (JNK, Akt, and AMPK) [47]. Curcumin inhibits p65

and cell invasion by downregulation of COX-2 and MMP-2 expression [48]; by suppression

of gene expression of EGFR and modulation of Akt/mTOR signaling, and inhibition of cell

growth [49, 50]. It has also been reported that curcumin suppresses p38 mitogen-activated

protein kinase (MAPK) activation, reduces IL-1 beta and matrix metalloproteinase-3, and

enhances IL-10 in the mucosa of children and adults with inflammatory bowel disease [51].

Epstein and co-workers had a thorough review on in vitro, animal and clinical studies [52].

In that review, curcumin is cited as non-toxic to human subjects at a high oral dose of up to

12 g/day, and it has anti-inflammatory, antioxidant and anti-cancer properties, however,

under some circumstances, its effects can be contradictory as the first clinical trial failed to

show benefit, which may be due to an unexpected lack of cognitive decline in placebo group

[52]. In our lab, curcumin was studied for modulating AP-1 in human colon HT-29 cancer

cell line and was found increasing AP-1-luciferase activity dose-dependently from 1 to 25

μM, and the expression of endogenous cyclin D1 protein was well correlated with those of

AP-1-luciferase assay [53]. It inhibited NF-κB stimulator lipopolysaccharide (LPS)-induced

inflammation, reduced LPS-induced IκB phosphorylation, and potently inhibited cell growth

in MTS assay. Caspase-3 activity was also induced by curcumin [54]. Among our other

studies, Affymetrix mouse genome 430 array (45K) was used to analyze mouse liver and

intestine mRNA after oral dose of curcumin at 1,000 mg/kg. Our results showed that 822

(664 induced and 158 suppressed) and 222 (154 induced and 68 suppressed) genes in the
liver and small intestine, respectively, were curcumin-regulated Nrf2 dependent, which can

be classified as ubiquitination and proteolysis, electron transport, detoxification, transport,

apoptosis and cell cycle control, cell adhesion, kinase and phosphatase, and transcription

factor [55]. Another study from our lab found curcumin inhibited the phosphorylation of

Akt, mTOR, and their downstream substrate in human prostate cancer PC-3 cells

concentration- and time-dependently. And the inhibition of Akt/mTOR signaling by

curcumin resulted from calyculin A-sensitive protein phosphatase-dependent

dephosphorylation [56]. We have also investigated combination of curcumin with

sulforaphane [57], with PUFA [58], with PEITC in inhibiting the growth of human PC-3

prostate xenografts in immunodeficient mice [59] and in inhibiting EGFR signaling in
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human prostate cancer PC-3 cells [60] and these studies demonstrated various levels of

synergistric effects.

2.3 Crocetin from saffron

Saffron is a spice from the flower of the Saffron crocus and a food colorant present in the

dry stigmas of the plant Crocus sativus L. [2]. In a recent review article, saffron is listed as a

potential agent for a novel anti-cancer drug against hepatocellular carcinoma [2, 61, 62].

Saffron and its ethanolic extracts are also reported for the studies on human lung cancer

[63, 64], pancreatic cancer cell line [65], skin carcinoma [66], colorectal cancer cells [67],

and breast cancer [68]. Its applications and mechanism of actions are reviewed by Bathaie

and Mousavi [69], and more recently, by Gutheil and Reed [2]. Yet, it has been concluded

that the exact mechanism of action is still not clear. In general, crocetin affects the growth of

cancer cells by inhibiting nucleic acid synthesis, enhancing anti-oxidative system, inducing

apoptosis and hindering growth factor signaling pathways [2]. Nam’s study has shown that

crocetin is effective for the inhibition of LPS-induced nitric oxide release, for the reduction

of the produced TNF-α, IL-1β, and intracellular reactive oxygen species, for the activation

of NF-κB, and blockage of the effect of LPS on hippocampal cell death [70]. Although

some studies beyond those mentioned above are successfully conducted, more thorough

understanding of the mechanism on crocetin and its effects are needed.

2.4 Cyanidins from grapes

Cyanidin is an extract of pigment from red berries such as grapes, blackberry, cranberry,

raspberry, or apples and plums, red cabbage and red onion. It possesses antioxidant and

radical-scavenging effects which may reduce the risk of cancer. It is reported to inhibit cell

proliferation, and iNOS and COX-2 gene expression in colon cancer cells [71]. Another

study shows that cyanidin-3-glucoside (C3G) attenuated the benzo[a]pyrene-7,8-diol-9,10-

epoxide-induced activation of AP-1 and NF-κB and phosphorylation of MEK, MKK4, Akt,

and MAPKs, blocked the activation of the Fyn kinase signaling pathway, which may

contributed to its chemopreventive potential [72]. C3G blocks ethanol-induced activation of

the ErbB2/cSrc/FAK pathway in breast cancer cells and may prevent/reduce ethanol-

induced breast cancer metastasis.[73] Cyanidin-3-O-glucoside, cyanidin-3-O-rutinoside, and

the ethanol extract of their source of freeze-dried black raspberries selectively caused

significant growth inhibition and induction of apoptosis in a highly tumorigenic rat

esophagus cell line (RE-149 DHD) but not in a weakly tumorigenic line (RE-149) [74].

Cyanidin markedly inhibited UVB-induced COX-2 expression and PGE2 secretion in the

epidermal skin cell line by suppressing NF-κB and AP-1 which are regulated by MAPK. In

that study, MKK-4, MEK1 and Raf-1 are targets of cyanidin for the suppression of UVB-

induced COX-2 expression [75]. Cyanidin-3-galactoside and cyanidin-3-glucoside are found

to be BCRP substrates, and cyanidin, cyanidin-3,5-diglucoside, and cyanidin-3-rutinoside

are potential BCRP inhibitors but their effects on MDR1 were weak [76]. This finding may

be helpful for the further development of these compounds for clinical studies and may

explain their pharmacokinetic performance in vivo.
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2.5 Diindolylmethane (DIM) /Indole-3-carbinol (I3C) from Brassica vegetables

Indole-3-carbinol (I3C) is found in Brassica vegetables, such as broccoli, cauliflower,

collard greens. Diindolylmethane (DIM) is a digestion derivative of indole-3-carbinol via

condensation formed in the acidic environment of the stomach. Both are studied for their

anticarcinogenic effects

I3C has been studied for cancer prevention and therapy for years [77] for tobacco smoke

carcinogen-induced lung adenocarcinoma in A/J mice and it was found that the lung cancer

preventive effects are mediated via modulation of the receptor tyrosine kinase/PI3K/Akt

signaling pathway, at least partially [78]. I3C and DIM demonstrated exceptional anti-cancer

effects against hormone responsive cancers like breast, prostate and ovarian cancers [79]. In

a recent study, it is concluded that DIM rather than I3C is the active agent in cell culture

studies [80].

DIM showed anti-cancer properties and is currently in clinical trials for various forms of

cancers. DIM transduces signaling via aryl hydrocarbon (Ah) receptor, NF-κB/Wnt/Akt/

mTOR pathways, impinging on cell cycle arrest, modulated key CYP enzymes, altering

angiogenesis, invasion, metastasis and epigenetic behavior of cancer cells [81]. DIM, along

with I3C were found to induce Nrf2-mediated phase II drug metabolizing (GSTm2,

UGT1A1, and NQO1) and antioxidant (HO-1 and SOD1) genes and also shown synergism

with isothiocyanates, such phenethyl isothiocyanate (PEITC) and sulforaphane (SFN) [82].

Lubet et al found that I3C acts as AhR agonist in mammary cancers while DIM does not,

and DIM is not analogous to I3C in exerting their anticarcinogenesis effects [83]. DIM and

I3C may act more effectively at earlier stage of prostate carcinogenesis and likely through a

combination of effects on steroid hormones and/or xenobiotic metabolism pathway [84].

2.6 Epigallocatechin gallate from green tea

EGCG is the most abundant catechin compounds in green tea. Increasing evidences show

that EGCG can be beneficial in treating brain [85], prostate [86], cervical [87], and bladder

[88] cancers. Yang et al reviewed tea and cancer prevention on molecular mechanisms,

molecular targets and human relevance of tea constituents [89-91]. Among numerous

mechanism studies, EGCG binds and inhibits the anti-apoptotic protein Bcl-xl [92], a

protein involved in both cancer cell and normal cell survival [93]. EGCG suppressed AOM-

induced colonic premalignant lesions in mice [94], interfered with EGFR signaling [95], and

inhibited hepatocyte growth factor-induced cell proliferation in human colon cancer cells

[96]. EGCG has shown inhibition of mitogen-activated protein kinases (MAPK), cyclin-

dependent kinases, growth factor-related cell signaling, activation of activator protein 1 and

NF-κB, topoisomerase I and matrix metalloproteinases. In human, the pharmacological

concentration are typically at least 10 μmol/L [91].

Our lab studied EGCG induced stress signals in HT-29 human colon adenocarcinoma cells

and found that EGCG inhibited HT-29 cell growth with an IC50 of approximately 100 μM,

and the dose levels higher than that showed apparent nuclear condensation and

fragmentation, and the study concluded that EGCG caused damage to mitochondria and

JNK mediated EGCG-induced apoptotic cell death [97]. EGCG was also found to increase
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AP-1 luciferase activity dose-dependently up to 100 μM [53], reduce LPS-induced IκB

alpha phosphorylation [54]. Additional study in our group demonstrated that combining

sulforaphane and EGCG exerted synergistic effects in HT-29 AP-1 human colon carcinoma

cells [98]. To investigate possible Nrf2-mediation, EGCG were orally dosed to C57BL/6J

and C57BL/6J/Nrf2(−/−) mice. The liver and small intestine were analyzed using

Affymetrix mouse genome 430 2.0 array. Gene expression showed that 671 Nrf2-dependent

and 256 Nrf2-independent genes were regulated by EGCG in liver, and 228 Nrf2-dependent

and 98 Nrf2-independent genes are regulated by EGCG in intestine. This study pointed out

that the EGCG chemopreventive effects may be mediated by Nrf2, at least partially [99].

2.7 Fisetin from strawberries, apples

Fisetin is a flavone found in various plants such as Acacia greggii, Acacia berlandieri,

Euroasian smoketree, parrot tree, strawberries, apple, persimmon, grape, onion, and

cucumber [100-102]. Fisetin has been found to alleviate aging effects in the yeast or fruit fly

[103, 104], exert anti-inflammatory effect in LPS-induced acute pulmonary inflammation

and anti-carcinogenesis effects in HCT-116 human colon cancer cells [105, 106]. Fisetin is

also a potent antioxidant and modulates protein kinase and lipid kinase pathways [107].

Fisetin, along with other flavonoids such as luteolin, quercetin, galangin and EGCG,

induced the expression of Nrf2 and the phase II gene product HO-1 in human retinal

pigment epithelial (RPE) cells which could protect RPE cells from oxidative-stress-induced

death with a high degree of potency and low toxicity [108] and reduced hydrogen peroxide

(H2O2)-induced cell death [109]. A recent study by Khan et al found dual inhibition of

PI3K/Akt and mTOR signaling in human non-small cell lung cancer cells by fisetin [110].

Fisetin inhibited Wnt signaling through the modulation of beta-catenin expression,

transcriptional activity and of the subsequent expression of Wnt target genes [111]. Other

studies found fisetin decreased cell viability with G1-phase arrest and disrupted Wnt/β-

catenin signaling [112], exhibited an inhibitory effect on the abilities of adhesion, migration,

and invasion, and significantly decreased the nuclear levels of nuclear factor kappa B (NF-

κB) and activator protein-1 (AP-1) [113]. Fisetin was also found to help to overcome the

multidrug resistance caused by the high expression of the plasma membrane drug transporter

P-glycoprotein (P-gp), which is associated with an elevated intracellular glutathione (GSH)

content in various human tumors [114].

2.8 Genistein from soybean

Genistein is an isoflavone originates from a number of plants such as lupine, fava beans,

soybeans, kudzu, and psoralea, Flemingia vestita, and coffee. Functioning as antioxidant and

anthelmintic, genistein has been found to have antiangiogenic effects (blocking formation of

new blood vessels), and may block the uncontrolled cell growth associated with cancer,

most likely by inhibiting the enzymes that regulate cell division and cell survival (growth

factors). Genistein’s activity was chiefly functioned as a tyrosine kinase inhibitor by

inhibiting DNA topoisomerase II [115, 116]. In vitro and in vivo studies show that genistein

has been found to be useful in treating leukemia [117-120].

Estrogen receptors are over-expressed in around 70% of breast cancer cases (ER-positive).

Binding of estrogen to the ER stimulates proliferation of mammary cells, with the resulting
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increase in cell division and DNA replication. Estrogen metabolism produces genotoxic

waste, which may cause disruption of cell cycle, apoptosis, DNA repair, and forms tumor.

Genistein can compete with 17β-estradiol (estrogen) to bind to estrogen receptor and shows

higher affinity towards estrogen receptor β than towards estrogen receptor α [121], where

estrogen receptor functions as a DNA-binding transcription factor that regulates gene

expression. Genistein was confirmed to increase the rate of growth of some estrogen

receptor in breast cancer and the rate of proliferation of estrogen-dependent breast cancer

when not co-treated with an estrogen antagonist [122, 123]. In colon cancer, genistein is

thought to contribute to reduced colonic inflammation in 2,4,6-trinitrobenzenesulfonic acid

(TNBS)-induced colitis [124]. Our lab previously investigated genistein and found that

genistein possibly involved in JNK pathway in inducing AP-1 activity [125].

2.9 Gingerol from gingers

Gingerol is the active component of fresh ginger with distinctive spicyness. Gingerol has

been studied for its anticancerous effects for the tumors in colon [126], breast and ovarian

[127, 128], and pancreas [129]. A recent review by Oyagbemi et al summarized the

mechanisms in the therapeutic effects of gingerol [130]. In short, gingerol has demonstrated

antioxidant, anti-inflammation, and antitumor promoting properties, decreases iNOS and

TNF-alpha expression via suppression of IκBα phosphorylation and NF-κB nuclear

translocation [130]. Treating K562 cells and MOLT4 cells with gingerol, the ROS levels

were significantly higher than control groups, inducing apoptosis of leukemia cells by

mitochondrial pathway [131]. On human hepatocarcinoma cells, gingerol, along with 6-

shogaol were found to exert anti-invasive activity against hepatoma cells through regulation

of MMP-9 and TIMP-1, and 6-shogaol further regulated urokinase-type plasminogen

activity [132]. Topical application of 6-shogaol, another active component from ginger is

more effective than 6-gingerol and curcumin in inhibiting 12-O-tetradecanoylphorbol 13-

acetate (TPA)-induced transcription of iNOS and COX-2 mRNA expression in mouse skin,

which may justify further in vitro and in vovo studies [133].

2.10 Kaempferol from tea, broccoli, grapefruit

Kaempferol is a natural flavonol isolated from tea, broccoli, Witch-hazel, grapefruit,

Brussels sprouts, apples, etc [134]. Kaempferol has been studied for pancreatic cancer [135],

and lung cancer [136]. It has been investigated for its antiangiogenic, anticancer, and radical

scavenging effects [137] [138]. Kaempferol, displayed moderate cytostatic activity of 24.8 –

64.7 μM in the cell lines of PC3, HeLa and K562 human cancer cells [139]. To et al studied

kaempferol as aryl hydrocarbon receptor (AhR) antagonist showing inhibition of ABCG2

upregulation, thereby reversing the ABCG2-mediated multi-drug resistance, which may be

useful for esophageal cancer treatment [140]. Luo et al found that kaempferol induces

apoptosis in ovarian cancer cells through the activation of p53 in the intrinsic pathway [141].

Yang et al reported that kaempferol inhibited quinine reductase 2 with an IC (50) value of

33.6 μM for NF-κB activity [142]. In a study by Niestroy et al, kaempferol was studied on

benzo[a]pyrene (BaP) mediated effects on Caco-2 cells on concerted effects on the

expression of AhR and Nrf2 pathway components [143]. In that study, BaP, quercetin and

kaempferol activated Nrf2 pathway by induction of Nrf2, and its target genes NQO1,

GSTP1, GSTA1, and GCLC. However, in spite of their own induction potential for Nrf2,
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both quercetin and kaempferol counteract the effects of BaP on expression of AhR, AhRR,

Nrf2, GSTP1 and NQO1 [143].

Kaempferol showed very low bioavailability of approximately 2% in earlier study [144].

Using Madin-Darby canine kidney (MDCK) cell monolayers, kaempferol was shown to be a

breast cancer resistance protein (Bcrp, Abcg2) inhibitor and may also be a Bcrp substrate,

which may represent one possible mechanism for the low bioavailability of kaempferol

[145].

2.11 Lycopene from tomato

Lycopene is a bright red pigment and phytochemical from tomatoes, red carrots,

watermelons, and red papayas. It demonstrates antioxidant activity and chemopreventive

effects in many studies, especially for prostate cancer. Poorly solube in water, lycopene has

high solubility in organic solvents. Its anti-cancer property is attributed to activating cancer

preventive enzymes such as phase II detoxification enzymes [146]. Lycopene was found to

inhibit human cancer cell proliferation, and to suppress insulin-like growth factor-I-

stimulated growth. This may open new avenues for lycopene study on the role of the

prevention or treatment of endometrial cancer and other tumors [147]. Lycopene also

possesses inhibitory effects on breast and endometrial cancer cells [148], prostate cancer

cells [146], and colon cancer cells [149]. However, in a study conducted by Erdman and

group using xenocraft prostate tumors into rats, it was found that the tumors grew more

slowly in those given whole dried tomato powder but not in those given lycopene, which

may indicate that lycopene may be an important component in tomato but not the only

component in tomato that actively suppressing the growth of the prostate cancer [150].

2.12 Phenethyl Isothiocyanate (PEITC) from cruciferous vegetable

PEITC, along with sulforaphane from cruciferous vegetables, such as watercress, broccoli,

cabbage, etc., have been studied for induction of apoptosis in cell lines. PEITC has shown

very strong potency against melanoma. It has been intensively studied for chemoprevention

against breast cancer cells [151, 152], non-small cell lung cancer [153], cervical cancer [154,

155], osteogenic sarcoma U-2 OS [156], prostate cancer [157-159], and myeloma cell lines

[160]. PEITC induces apoptosis in some cell lines that are resistant to some currently used

chemotherapeutics drugs.

PEITC induced apoptosis in highly metastatic human non-small cell lung cancer L9981 cells

via Caspase-3 activation , leading to cell cycle arrest at the G2/M phase by modulation of

cyclin B1 expression, where MAPK/AP-1 pathway was the target [153]. In vitro and in vivo

data support that PEITC, as well as sulforaphane, induced G2/M cell cycle arrest, apoptosis

of cell death of myeloma cells [160]. In cervical cancer cells, PEITC was found to increase

the expression of the death receptors (DR4 and DR5), cleaved caspase-3, induced caspase-8

and truncated BID, down-regulated the ERK1/2 and MEK phosphorylation while

maintaining the expression of JNK and phospho-p38 MAPK [154]. PEITC was also studied

for cytotoxicity in a human liver hepatoma cell line (HepG2-C8) along with I3C, DIM, and

sulforaphane, and it turned out that PEITC was more toxic than I3C and DIM [82]. In

human prostate cancer DU 145 cells, PEITC induced apoptosis mediated by the activation of
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caspase-8, -9, and -3-dependent pathways [161]. PEITC induced substential increase in the

activation of caspase-3, -8, -9, cleavage and degradation of PARP, and apoptosis dose- and

time-dependently, accompanied by the caspase-independent downregulation of Mcl-1, Akt

inactivation, and activation of JNK [162]. Using human osteogenic sarcoma U-2 OS cells,

PEITC, along with benzyl isothiocyanates (BITC), caused growth inhibition, inhibited cell

cycle regulatory proteins, promoted Chk1 and p53, induced apoptosis and poly(ADP-

ribose)polymerase (PARP) cleavage [156]. Wang et al found that cells with mutant p53 are

more sensitive to cytotoxicity induced by PEITC than those with wild-type protein, which

may be a novel target for cancer chemoprevention [163].

2.13 Resveratrol from grapes

Resveratrol is a natural phenol and can be found in the red grapes skin, peanuts and in other

fruits. Jang et al reported cancer chemopreventive activity of resveratrol [164]. In that study,

resveratrol was found to possess anti-initiation activity by inducing phase II drug

metabolizing enzymes, anti-promotion activity by mediating anti-inflammatory effects and

inhibiting cyclooxygenase and hydroperoxidase functions, and anti-progression activity by

inducing cell differentiation in human promyelocytic leukemia. However, poor oral

bioavailability [165] caused by rapid metabolism limited its effectiveness in animal cancer

models and in human studies [166, 167]. However, with direct contact, resveratrol has

demonstrated anti-carcinogenesis effects in skin tumor [168, 169] and gastrointestinal tract

tumor, such as N-nitrosomethylbenzylamine (NMBA)-induced esophageal tumors in rats

[170]. Resveratrol was found to inhibit metastasis via reducing hypoxia inducible factor-1α
and MMP-9 expression in colon cancer cells [171]; to suppress dextran sulfate sodium

(DSS) – induced colitis through downregulation of p38, prostaglandin E synthase-1, iNOS,

and COX-2 in mice [172]; to inhibit Wnt signaling and beta-catenin localization in colon-

derived cells [173]. Another study found that resveratrol at a concentration of 10 μM or

more induces apoptosis in normal cells as well as cancer cells which demonstrated a

potential cytotoxic effect on normal cells [174].

Our lab studied resveratrol’s modulation of AP-1 in human colon HT-29 cancer cell line and

reported that resveratrol increased AP-1-luciferase activity dose-dependently and induced

cell death in a dose-dependent manner [53]. Resveratrol increased activation of LPS-induced

NF-κB-luciferase activity at lower dose, but inhibited activation at higher dose, reduced

LPS-induced IκB alpha phosphorylation, and induced caspase-3 activation [54]. Our another

toxicogenomics study of resveratrol in rat liver showed that at the high doses (3 gm/kg/day

for 28 days) the modulation of liver genes may implicate the potential toxicity [175].

2.14 Rosmarinic acid from rosemary

Rosmarinic acid (RA) is a natural antioxidant found in culinary spice and medicinal herbs

such as lemon balm, peppermint, sage, thyme, oregano, and rosemary to treat numerous

ailments. Rosemary extracts play important roles in anti-inflammation, anti-tumor, and anti-

proliferation in various in vitro and in vivo studies. Study in Ls174-T human colon

carcinoma cells found that rosmarinic acid inhibits migration, adhesion, and invasion dose-

dependently [176]. In another study, rosmarinic acid may inhibit bone metastasis from

breast carcinoma mainly via the pathway of the NF-κB and by simultaneous suppression of
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interleukin-8 (IL-8) [177]. Moon et al investigated TNF-α mediated anti-cancer therapy

mechanism. In human leukemia U938 cells, rosmarinic acid significantly sensitized TNF-α-

induced apoptosis through the suppression of NF-κB and reactive oxygen species (ROS),

and suppressed NF-κB activation through inhibition of phosphorylation and degradation of

IκBα [178]. Rosmarinic acid reduced 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced

COX-2 promoter activity and protein levels in colon cancer HT-29 cells, repressed binding

of the activator protein-1 (AP-1) in a nonmalignant breast epithelial cell line (MCF10A),

and antagonized the stimulatory effects of TPA on COX-2 protein expression [179].

2.15 Sulforaphane from cruciferous vegetables

Sulforaphane is an organosulfur compound obtained from cruciferous vegetables such as

broccoli, Brussels sprouts and cabbages. The enzyme myrosinase in GI tract transforms

glucoraphanin into sulforaphane upon damage to the plant such as from chewing. Broccoli

sprouts and cauliflower sprouts are rich in glucoraphanin.

Sulforaphane has shown induction of phase II drug metabolism enzymes of xenobiotic

transformation, such as quinine reductase and glutathione S-transferase, and enhances the

transcription of tumor suppression proteins. Sulforaphane downregulated the Wnt/beta-

catenin self-renewal pathway in breast cancer stem cells [180]; protected skin against UV

radiation damage [181], and inhibited histone deacetylase (HDAC) activity [182]. In

Apc(Min/+) mice, sulforaphane reduced the number of polyps by inhibiting Akt, ERK

signaling, COX-2, and cyclin D1 protein expression [183] and also inhibited cancer cell

growth by inducing apoptosis in SW620 cells [184]. In a recent study, sulforaphane induced

cytotoxicity and lysosome- and mitochondria-dependent cell death in colon cancer cells with

deleted p53. It also increased Bax in the presence of JNK-mediated Bcl-2 inhibition

followed by mitochondrial release of cytochrome c and activation of apoptosis [185].

In our lab, sulforaphane has been studied for its chemoprevention activities and its

involvement in anti-inflammation. In human colon HT-29 cancer cells, sulforaphane

increased AP-1-luciferase activity dose-dependently and then decreased at higher doses, and

induced JNK activity [53]. Sulforaphane also strongly inhibited LPS-induced NF-κB-

luciferase activations. In MTS assay, sulforaphane potently inhibited cell growth and

induced caspase-3 activity [54]. In HepG2 human hepatoma cells, sulforaphane strongly

induced Nrf2 protein expression and ARE-mediated transcription activation, retarded

degradation of Nrf2 through inhibiting Keap1, and activated transcriptional expression of

antioxidant enzyme HO-1 [186]. In human prostate cancer PC-3 cells, sulforaphane

suppressed NF-κB and NF-κB-regulated gene expression through IκB-alpha, and IKK

pathway [187]. Sulforaphane was found to be unable to disrupt the cytosolic distribution of

Nrf2 zip which indicates that the importance of Keap1 retention as a key rate-limiting step in

Nrf2 activation [188]. Study in HepG2 cells also found that transcriptional activation of

Nrf2/ARE is critical in sulforaphane-mediated induction of HO-1, which can be modulated

in part by the blockade of p38 MAPK signaling pathway. In addition, p38 MAPK can

phosphorylate Nrf2 and enhances the association between Nrf2 and Keap1 proteins, thereby

potentially inhibiting Nrf2 translocation into nuclear to initiate antioxidant gene

transcription [189]. Pretreatment of sulforaphane in primary peritoneal macrophages of wild
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type mice potently inhibited LPS-stimulated mRNA expression, protein expression of TNF-

alpha, IL-1beta, COX-2 and iNOS. HO-1 expression was significantly augmented as well.

The anti-inflammatory effects was attenuated in Nrf2 (−/−) primary peritoneal macrophages

and therefore, the anti-inflammatory activity was mainly exerted by Nrf2 pathway in mouse

peritoneal macrophages [190].

In the liver of C57BL/6J and C57BL/6J/Nrf2(−/−) mice, sulforaphane induced Nrf2-

dependent detoxification phase I, II drug metabolizing enzymes and phase III transporters,

using Affymetrix 39K oligonucleotide microarray. This study indicates that sulforaphane

increases the expression of genes through the Nrf2 signaling pathway that directly detoxify

exogenous toxins/carcinogens or endogenous reactive oxygen species, and genes involved in

the recognition and repair/removal of damaged proteins [191]. In the ApcMin/+ mice, when

fed with SFN supplemented diet, the mice developed significantly less and smaller polyps

with higher apoptotic and lower proliferative indices in their small intestine in a dose-

dependent manner. SFN also found to suppress the expression of phosphorylated c-Jun N-

terminal kinase (p-JNK), phosphorylated extracellular signal-regulated kinases (p-ERK) and

phosphorylated-Akt (p-Akt). However, the biomarkers of the Wnt pathway, beta-catenin and

cyclin-D1 were unaffected by sulforaphane treatment. This study also found that a diet of 3

to 30 nmol/g is required to prevent or retard adenoma formation in the ApcMin/+

gastrointestinal tract [192]. In our another study, sulforaphane was found to inhibit 7,12-

dimethylbenz(a)anthracene-induced skin tumorigenesis in C57BL/6 mice mediated by Nrf2

[193]. In ApcMin/+ mice, the effects of sulforaphane on the gene expression profile in small

intestinal polyps were studied using Affymetrix microarray. While SFN is a strong phase II

drug metabolizing enzyme inducer, apoptosis genes MBD4, TNFR-7 and TNF (ligand)-11

were up-regulated, cell growth and maintenance genes, pro-survival genes cyclin-D2,

integrin-beta1 and Wnt-9A were down-regulated, where the predicted phase II genes were

less modulated. Genes potentially involved in colorectal carcinogenesis, 15-LOX was found

increased and COX-2 decreased [194]. In C57BL/6J wild type and C57BL/6J/Nrf2(−/−)

knock-out mice, UVB exposure (300mJ/cm2) resulted in skin inflammation in both groups,

however, WT mice returned to basal level to a greater extent; and mice treated with

sulforaphane restored sunburn cells by 8 days but KO mice did not, which indicates

functional Nrf2 confers a protective effect against UVB-induced inflammation, and

sulforaphane mediates photoprotective effects in the mice [195].

Sulforaphane demonstrated synergistic effects when combined with EGCG in HT-29 AP-1

human colon carcinoma cells [98], or with dibenzoylmethane in ApcMin/+ mice for reducing

intestinal adenomas [183], or with phenethyl isothiocyanate in down-regulating

inflammation markers TNF, IL-1, NO, PGE2 and inducing phase II/antioxidant enzymes

like HO-1, NQO1 in RAW 264.7 cells [57].

After fed with dietary broccoli sprouts for 16 weeks, TRAMP mice were sacrificed and

analyzed for sulforaphane and sulforaphane-GSH conjugate in the prostate tumor. TRAMP

mice with high broccoli diet showed significant retardation of prostate tumor growth and

elevated expression levels of Nrf2, HO-1, cleaved-Caspase-3, cleaved-PARP and Bax

proteins and decreased expression levels of Keap1 and Bcl-xL proteins; and the Akt and its

downstream kinase and target proteins such as mTOR, 4E-BP1 and cyclin D1 were also
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reduced. All of these indicate that sulforaphane has significant inhibitory effects on prostate

tumorigenesis [196].

Many other laboratories have been very active in the research on sulforaphane. There are

currently eighteen clinical studies registered with clinicaltrials.gov and sulforaphane is a

promising compound for its druggability.

2.16 Triterpenoids from wax-like coatings of fruits and medicinal herbs

Triterpenoids are biosynthesized in plants by cyclization of squalene, a triterpene

hydrocarbon and precursor of all steroids [197]. This group of phytochemicals are sub-

classified into cucurbitanes, dammaranes, ergostanes, friedelanes, lanostanes, limonoids,

lupanes, oleananes, tirucallanes, ursanes [14], and the list is still growing. The diversity and

regulation of terpenoids are appreciated by Tholl review [198]. Various in vitro and in vivo

studies have been conducted for chemoprevention and therapy of breast cancer [14], and

pancreatic cancer [199] using triterpenoids. This group of phytochemicals exert their

chemopreventive and anti-cancer activities via enhancing apoptosis, NO, stimulating DR4,

DR5, caspase-3/7, caspase 8, Bax, JNK, MAPK, p38, decreasing phosphor-STAT3, PARP

cleavage, suppressing COX-2, IL-1β, NF-κB, IKKα/β, cyclin D1, cyclin A, cyclin B1, ERα
protein and mRNA, HER2 phosphorylation, caveolin-1, Akt, JAK1, STAT 3, Bcl2, c-Jun, c-

Fos, JNK, mTOR, blocking cell cycle at G1, G1-S, G2-M, etc [14].

Through these studies, triterpenoids have been shown to possess pleiotropic mode of effects

for cancers in in vitro and in vivo models. More studies are needed to validate their promises

in their chemopreventive and anti-cancer activities in clinical stage.

2.17 Vitamin D from mushroom

After exposed to ultraviolet B light, vertebrate can generate Vitamin D in their skins. Light

exposed mushroom could also be an excellent source of Vitamin D. Vitamin D has been

involved in breast cancer [200], colon cancer [201], ovarian cancer [202], and pancreatic

cancer [203]. The mechanism is still not quite clear. However, vitamin D receptor (VDR)

appears playing an important role. For example, women with mutations in the VDR gene

had an increased risk of breast cancer and VDR may be a mediator of breast cancer risk

which could represent a target for cancer prevention efforts [204].

Two physiologically relevant Vitamin Ds are vitamin D2 (ergocalciferol) and D3

(cholecalciferol). D3 is produced after exposure to ultraviolet B light from the sun or

artificial sources. Numerous studies have linked vitamin D and cancer but opposite

conclusion were also presented by the conflicting study results. Vitamin D’s anti-cancer

effect may be mediated via vitamin D receptors (VDR) in cancer cells [200]. Increased risk

of breast cancer has been linked with the polymorphisms of VDR gene [204]. Kovalenko et

al using VDR KO and WT mice and showed that low diet vitamin D or VDR deletion

provided a prostate environment that is permissive to early pro-carcinogenic events that

enhance prostate cancer risk [205]. Stefanska et al reported that vitamin D3 possess high

efficacy in the reduction of PTEN promoter methylation and it was associated with PTEN

induction as well as DNA methyltransferase down-regulation and p21 up-regulation after
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treatments with vitamin D3, suggesting a complex regulation of the DNA methylation

machinery [206]. However, a literature conducted through June 2010, Hypovitaminosis D

seems to be associated with a worse prognosis in some cancers, but vitamin D

supplementation failed to demonstrate a benefit in prostate cancer patients and the available

evidence is insufficient to recommend vitamin D supplementation in cancer patients in

clinical practice [207]. And study also suggested that genetic polymorphisms in vitamin D-

related genes do not play a major role in breast cancer risk in Chinese women [208].

Therefore, vitamin D’s skin cancer and prostate cancer prevention are still inconclusive

[209, 210].

2.18 Vitamin E from plant oil

Vitamin E represents a family of compounds comprising both tocopherols and tocotrienols

and is a fat-soluble antioxidant that exists in many foods including wheat germ oil,

sunflower oil, and safflower oils. Alphatocopherol is the most bioactive form of vitamin E

that stops the production of reactive oxygen species when fat undergoes oxidation. There are

reports that both tocopherols and tocotrienols have anti-tumor effects due to their

antioxidant properties, and tocotrienols show stronger bioactivity and both show

antiproliferative, proapoptotic and COX-2 inhibiting effects in in vitro studies [211]. Review

by Viola et al discussed the hypomethylated forms of tocotrienols in their high in vitro and

in vivo metabolism and their potency in cytoprotection, cancer prevention and even

chemotherapeutic effects [13]. Chen et al reported that vitamin E supplementation could

evidently inhibit or reverse the cytotoxic effects of cigarette smoke extract in a dose- and

time-dependent manner in mouse embryonic lung cells [212]. A recent review by

Nesaretnam and Meganathan linked tocotrienols and their roles in inflammation and cancer,

and in this review, mechanism of the cellular signaling pathways of NF-κB, STAT3, and

COX-2 were discussed [213]. In a meta-analysis and meta-regression study, although

vitamin A, dietary vitamin E, and total vitamin E intake all reduced breast cancer risk

significantly when data from all studies were pooled, the results became non-significant

when data from cohort studies were pooled [214].

Tocotrienols are members of the vitamin E family. Unlike tocopherols, tocotrienols possess

an unsaturated isoprenoid side chain that confers superior anti-cancer properties and they

inhibit AKT and ERK activation and suppress pancreatic cancer cell proliferation by

suppressing the ErbB2 pathway [215]. In pancreatic cancer cell lines, tocotrienols

selectively inhibit the HMG-CoA reductase pathway through posttranslational degradation

and suppress the activity of transcription factor NF-κB. γ- and δ-tocotrienol treatment of

cells reduced the activation of ERK MAP kinase and that of its downstream mediator

ribosomal protein S6 kinase (RSK) in addition to suppressing the activation of protein

kinase AKT. Tocotrienols reduced apoptosis in pancreatic cancer cells through the

suppression of vital cell survival and proliferative signaling pathways such as those

mediated by the PI3-kinase/AKT and ERK/MAP kinases via downregulation of Her2/ErbB2

expression [215]. Sylvester et al discussed the approach to combine tocotrienols with agents

that have complementary anticancer mechanisms of action to achieve synergistic anticancer

response, e.g., combination with traditional cancer chemotherapy, with statins, with receptor

tyrosine kinase inhibitors, and with COX-2 inhibitors [216].
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3. Mechanisms involved in cancer chemoprevention and treatment

3.1 Apoptosis mechanism initiated by phytochemicals

Apoptosis pathways are very important in cancer related therapies. In fact, many

phytochemicals were originally used as anti-inflammatory or anti-viral reagents and, while

the understanding of cancer mechanism deepens, their anti-tumor activities, such as

targeting apoptosis pathways in cancer are recognized and utilized [217, 218]. Li-Weber

summarized apoptosis pathways in cancer by traditional Chinese medicine (TCM) based on

practical experiences [217].

Apoptosis is the process of programmed cell death that may occur in multicellular

organisms. The process includes blebbing, cell shrinkage, and nuclear fragmentation. In

cancer, insufficient apoptosis results in uncontrolled cell proliferation. The apoptosis

mechanism involves several signal transduction pathways. Apoptotic proteins may form

membrane pores and cause mitochondrial swelling and increase the permeability of the

mitochondrial membrane and leak out the apoptotic effectors [219]. Small mitochondrial-

derived activator of caspases (SMACs) are released from the mitochondrial into cytosol,

bind to inhibitor of apoptosis proteins (IAPs), deactivate IAPs and prevent them from

arresting the apoptotic process. Caspases, which carry out the cell degradation and are

normally suppressed by IAPs, proceed for cell apoptosis process [220]. Due to the formation

of mitochondrial apoptosis-induced channel (MAC) in the outer mitochondrial membrane,

cytochrome c is released from mitochondria and binds with apoptotic protease activating

factor-1 (Apaf-1) and ATP, which then binds to pro-caspase-9 to create a protein complex

apoptosome and cleaves pro-caspase and release active form of caspase-9, which in turn

activates the effector caspase-3 [221]. Bcl-2 family proteins regulate MAC and

Mitochondrial Outer Membrane Permeabilization Pore (MOMPP) where pro-apoptotic Bax

and/or Bak form the pore, and anti-apoptotic Bcl-2, Bcl-xL or Mcl-1 inhibit the formation of

the pore [222].

Tumor Necrosis Factor (TNF), a cytokine mainly produced by activated macrophages, is the

major mediator of binary hipaloptic apoptosis. When TNF binds with its receptor, cell

survival and inflammatory responses are initiated. Fas ligand (FasL) is a transmembrane

protein of the TNF family. The interaction of FasL and Fas receptor (Apo-1 or CD95) forms

death-inducing signaling complex (DISC), which contains the Fas-associated death domain

protein (FADD) , caspase-8, and caspase-10 [223].

In mammalian cells, a balance between pro-apoptotic (BAX, BID, BAK, or BAD) and anti-

apoptotic (Bcl-Xl and Bcl-2) proteins of the Bcl-2 family is established and maintained.

Caspase activator such as cytochrome c and SMAC can be released from within the

mitochondrial membrane when the membrane is permeable after the pro-apoptotic

homodimers are formed in the outer-membrane of the mitochondrion. Inhibitor caspases,

such as caspase 8, 10, 9, 2 require binding to certain oligomeric adaptor protein; and effector

caspases, such as caspases 3, 7, 6, are activated by the active initiator caspase via proteolytic

cleavage and degradation of a host of intracellular proteins to further the cell death process.

Some of the cancer and phytochemical related apoptosis mechanisms are discussed in more

detail in the following sections.
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3.2 ATP-dependent chromatin remodeling

Chromatin remodeling is the enzyme-assisted movement of nucleosomes on DNA.

Chromatin is a condensed and often inaccessible structure where genomic DNA is packaged

through histone and non-histone proteins. When DNA damage occurs, efficient and accurate

repair of DNA damage ensures genome stability and prevents damage development which

could lead to cancer or cell death [224]. Activating DNA damage response (DDR) enables

the cells to utilize post-translation histone modifications and ATP-dependent chromatin

remodeling to modulate chromatin structure and increase the accessibility of the repair

machinery to lesions embedded in chromatin [225]. Chromatin remodeling utilizes the

energy of ATP to disrupt nucleosome DNA contacts, move nucleosomes along DNA, and

remove or exchange nucleosomes such that DNA repair can be accomplished. Via ATP

hydrolysis, the chromatin structure of a number of large multi-protein complexes (200 kDa –

2 MDa) can be enzymatically modulated [226]. Several chromatin remodeling complexes

are involved in the process: switch/sucrose non-fermentable (SWI/SNF) family containing

either the brahma (BRM) or brahma-related gene 1 (BRG1) ATPase which slide and eject

nucleosomes, imitation switch (ISWI) complexes containing SNF2H or SNF2L ATPase and

mediate nucleosome sliding and histone displacement, inositol requiring 80 (INO80)

chromatin remodeling factors containing INO80 ATPase or related SWR1-like factors such

as the p400 ATPase which features long insertion in the middle of the conserved ATPase

domain, and chromodomain helicase DNA-binding protein (CHD) family members

containing two tandemly arranged chromodomains (CDs) on the N-terminus of their ATPase

which are involved in binding methylated histone tails as well as DNA and can slide and

eject histones and have both activatory and inhibitory roles in transcription regulation [225,

227]. An ATPase which is capable of DNA translocation moves nucleosomes such that

transcription factors can access to DNA [228]. Luijsterburg and van Attikum recently linked

chromatin and the DNA damage response with the cancer [225]. Hargreaves and Crabtree

reviewed the genetics, genomics and mechanisms of ATP-dependent chromatin remodeling

[229].

While many cancer cells have defects in one or more aspects of the DDR, such cells may be

more vulnerable to cancer therapies that aim at targeting the tumor-related DDR defects

[230].

3.3 Cyclooxygenases-2 (COX-2)

Cyclooxygenases are bi-functional membrane-bound enzymes related to the formation of

prostanoids, which are oxygenated C18 to C22 compounds derived from ω-3 and ω-6 fatty

acids [231]. While COX-1 in general is involved in housekeeping functions and is

constitutively and stably expressed in cells and in tissues, and COX-3 which appears

expressed only in some specific tissues including brain and spinal cord [232, 233], COX-2 is

normally low in most cells but is constitutively elevated in 80-90% of colorectal and other

cancers [234, 235]. This may due to the cross-talk between several mediator of

inflammation , such as interleukins and cytokines (i.e., IL-1, IL-6 and TNF-α) [236]. For

this reason and also that COX-2 expression in colorectal cancers association with larger

tumor size and poor survival [237], COX-2 is therefore proposed to be a nutritional target

for colon cancer prevention [238].
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Since COX-2 is one of the pro-inflammatory mediators which may be induced at the very

early stage of carcinogenesis, the prevention of its aberrant expression could translate to

prevention of the formation of cancer because of its insurgence [29, 239]. The cultured

murine macrophages, RAW 264.7, or primary macrophages collected from mice then

stimulated with LPS/IFNγ are common models of acute inflammation [58, 240]. COX-2,

due to its promoter contains a number of upstream regulatory sequences specific for binding

with a variety of transcription factors, such as NF-κB, SP-1 transcription factor, activator

protein-1 (AP-1), etc [241]. and these transcription factors are pleiotropic and being the final

executors for a myriad of intracellular signaling pathways [29], which make the COX-2

transcriptional regulation highly complicated. Cerella et al reviewed COX-2 expression and

modulation during transcriptional, post-transcriptional, and post-translational stages and its

modulation by selected natural compounds [29].

3.4 DNA methylation - epigenetics

DNA methylation is a process that a methyl group is added to the 5 position of the cytosine

pyrimidine ring or the number 6 nitrogen of the adenine purine ring. DNA methylation can

be inherited when cells divide. DNA methylation typically occurs at CpG sites, where a

cytosine and guanine are separated by a phosphate in the linear sequence of bases along its

length in adult somatic tissue. According to studies, between 60% and 90% of all CpGs are

methylated in mammals [242]. Unmethylated CpG are present in the 5′ regulatory regions

of many genes. In cancer developmental process, gene promoter CpG islands acquire

abnormal hypermethylation, result in transcriptional silencing and are inherited by daughter

cells following cell division. Hypomethylation of CpG sites is associated with the over-

expression of oncogenes within cancer cells. On the other hand, methylation of CpG sites

within the promoters of genes can lead to their silencing in cancer. Therefore,

hypermethylation becomes the target for epigenetic therapy [243].

In addition, methylated DNA can bind with methyl-CpG-binding domain proteins (MBDs),

and form compact yet inactive heterochromatin which also causes gene silencing. It is

known that for hypermethylated genes in cancer, methyl-CpG-binding domain protein 2

(MBD2) mediates the transcription gene silencing.

3.5 Hedgehog signaling pathway

The hedgehog signaling pathway provides instructions to the cells to be developed properly

into different parts based on the different concentrations of hedgehog signaling proteins at a

specific time. Activation of the hedgehog pathway has been implicated in the cancers in

various organs, including brain, lung, prostate, and skin. It is shown that abnormal activation

of the pathway may give rise to cancer through transformation of adult stem cells into cancer

stem cells and researcher are studying specific inhibitors of hedgehog signaling in an effort

to devise an efficient therapy for a wide range of cancer [244].

In vertebrate cells, sonic hedgehog (SHH) contains a ~20 kDa N-terminal signaling domain

(SHH-N) and a ~25 kDa C-terminal domain with unknown signaling role. When SHH binds

to the Patched-1 (PTCH1) receptor, the downstream protein Smoothened (SMO) inhibited

by PTCH1 is activated and leads to the activation of the GLI transcription factors [245]. The
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activated GLI accumulates in the nucleus and controls the transcription of hedgehog target

genes. Activation of the hedgehog pathway leads to the increases of angiogenic factors,

cyclins, anti-apoptotic genes and the decreases of apoptotic genes, such as Fas [246-248].

Sarkar [249], Marini [250], and Gupta[251] recently reviewed Hedgehog signaling as a

target pathway for cancer treatment. Thus far, modulating SMO, PTCH[252] and Gli3(5E1)

[253] are the approaches to regulate the hedgehog pathway in the search of hedgehog

antagonist for solid tumor, and Gli1 siRNA has been used to inhibit cell growth and promote

apoptosis in prostate cancer [254].

3.6 Histone modification - epigenetics

Each chromosome consists of 146 base-pairs of duplex DNA wrapped around a histone

octamer while chromosomes form chromatin and are compartmentalized in the nucleus to

form a highly intricate packaging, DNA is accessible for critical cellular processes such as

transcription, replication, recombination, and repairs. Histones are highly alkaline proteins

in cell nuclei that package and order the DNA into structural units – chromasomes. Histones

act as spools around DNA winds to allow the compaction to fit the large genomes inside cell

nuclei. Histone modifications include acetylation, methylation, phosphorylation and

ubiquitylation of different tails [225, 255]. Through histone modification, an activation or

repression of the gene transcription will be resulted. For example, methylated DNA binds to

MBD proteins then recruits additional proteins to the locus such as histone deacetylases and

other chromatin remodeling proteins that can modify histone to form compact inactive

heterochromatin.

3.7 microRNAs (miRNA)

miRNAs receive greater attention in cancer research in recent years and their regulation by

natural phytochemicals becomes an emerging field in chemoprevention and chemotherapy

research [256]. miRNAs are small conserved non-coding RNA molecules that post-

transcriptionally regulate gene expression by targeting the 3′ untranslated region of specific

messenger RNAs for degradation or translational repression [257]. miRNAs serve as post-

transcriptional regulators that binds to complementary sequences on one or more messenger

RNA transcripts [258]. In animals, miRNA can be fully or partially complementary to the

miRNA target so that one miRNA could target many different sites on the same mRNA or

on many different mRNAs. In this manner, relatively small changes in miRNA expression

can lead to modest changes in the levels of multiple proteins and collectively can add up to

qualitative or quantitative physiological changes [259].

Most miRNA genes are found in intergenic regions or in anti-sense orientation to genes and

contain their own miRNA gene promoter and regulatory units [260]. miRNA appears to bind

to messenger RNA before it can be translated to proteins that switch genes on and off [261].

miRNA are transcribed as a huge double-stranded primary transcript (pri-miR) by RNA

polymerase II. Subsequently, nuclear enzymes, Drosha (ribonuclease III) and Pasha convert

this precursor into a double-stranded miRNA precursor of ~70 nucleotide (pre-miR) which

is then transported into the cytoplasm by a mechanism involving protein Exportin 5. The

pre-miR is processed into the 22-nucleotide double-stranded miRNA by dicer enzyme. The
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duplex is then unwinded into two strands, the passenger strand which is degraded, and the

guide strand which is incorporated into the RNA-induced silencing complex (RISC). RISC

incorporated with miRNA is able to bind to the 3′ untranslated region (UTR) of target

mRNAs and causes a block of translation or mRNA degradation depending on the level of

complementarity [257, 258, 262]. While miRNA plays an important role in regulating

cellular differentiation and proliferation, its misregulation is linked to cancer and can be

tumor suppressor and inducer oncogenes. Studies show that miRNA deficiencies or excesses

have been correlated to cancer and other diseases. Excess c-Myc, a protein with mutated

forms implicated in several cancers, shows that miRNA has an effect on the development of

cancer.[263]

Over-expression of miRNAs down-regulates tumor suppressors and contributes to tumor

formation by stimulating proliferation, angiogenesis, and invasion, and acting as oncogenes.

However, miRNAs can also down-regulate different proteins with oncogenic activity or

acting as tumor suppressor [264]. Therefore, identifying specific miRNA regulators could be

a viable approach in searching and developing cancer prevention and treatment agents.

3.8 NF-κB pathway

Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) is linked to cancer

development and many other diseases. NF-κB is a family of rapid-acting primary

transcription factors, and their presence in cells are in a state of inactive and do not require

new protein synthesis to be activated, like c-Jun, STATs. This allows NF-κB to be a first

responder to harmful cellular stimuli. Reactive oxygen species (ROS), TNF alpha, IL-1 beta,

lipopolysaccharide (LPS) are some examples of NF-κB inducers.

In the basal condition, the NF-κB dimmers are sequestered in the cytoplasm by a family of

IκBs, whose ankyrin repeat domains mask the nuclear localization signals (NLS) of NF-κB.

There are five proteins in the mammalian NF-κB family: NF-κB1 (p50), NF-κB2(p52),

RELA(p65), RELB, c-REL. When stimulated, IκBs are modified by ubiquitination via IκB

kinases (IKK) and leads to their degradation. NF-κB is then freed to enter the nucleus where

it can turn on the expression of specific genes that have DNA-Binding sites for NF-κB

nearby. The NF-κB turns on expression of its own repressor, IκBalpha, which in turn

reinhibits NF-κB and forms an auto feedback loop, which results in oscillating levels of NF-

κB activity [265]. In tumor cells, NF-κB is activated, while blocking NF-κB can cause

tumor cells to stop proliferating, to die or become more sensitive to the action of anti-tumor

agents [266].

3.9 Nrf2 pathway

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2, or NFE2L2) is a transcription factor that

regulates antioxidant responses [267]. Since oxidative stress can result in cancer, Nrf2

pathway is important in cancer chemoprevention and cancer therapy studies.

Nrf2 is a basic leucine zipper (bZIP) transcription factor that is distinct from the other bZIP

families, such as JUN and FOS [268]. Under unstressed condition, Nrf2 is tethered in the

cytoplasm by the Kelch like-ECH-associated protein 1 (Keap1) [269]. Oxidative or other

electrophonic stress disrupts critical cysteine residues in Keap1 and releases Nrf2 to
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translocate into the nucleus. There, Nrf2 heterodimerizes with small Maf proteins and binds

to the anti-oxidant response element (ARE) in the promoter region of many antioxidative

genes and initiate their transcription [270]. The cytoprotective proteins include phase II drug

metabolism enzymes, such as NAD(P)H-quinone oxidoreductase 1 (NQO1); heme

oxygenase-1 (HO-1), glutathione S-transferase (GST), UDP-glucuronosyltransferase (UGT),

or phase III transporters, such as multidrug resistance-associated proteins (MRPs)

[271-276]. Figure 1 illustrates the chemopreventive agents dissociating Keap1 from Nrf2,

resulting in induction of Phase II genes, followed by translating the genes to proteins for

chemoprevention effects. Nrf2 has been extensively discussed and a recent review by Keum

provides an up-to-date review of this signal pathway [277].

3.10 PI3 kinase pathway

Phosphatidylinositol 3-kinases (PI3Ks) are a family of enzymes involved in cell growth,

proliferation, differentiation, survival and intracellular trafficking. They are intracellular

signal transducer enzymes and exert their functions by phosphorylating the 3 position

hydroxyl group of the inositol ring of phosphatidylinositol (Ptdlns) [278].

Activated PI3-k produces Ptdlns(3,4,5)P3 and Ptdlns(3,4)P2, which are bound by AKT.

AKT translocation to the plasma membrane due to that of the Ptdlns(3,4,5)P3 and

Ptdlns(3,4)P2 are restricted to plasma membrane. In the same fashion, the pleckstrin

homology domain of the phosphoinositide-dependent protein kinase 1 (PDK1) binds to

Ptdlns(3,4,5)P3 and Ptdlns(3,4)P2, translocates to plasma membrane as well. Due to the

colocalization of activated PDK1 and AKT, AKT is phosphorylated by PDK1 on threonine

308, leading to partial activation of AKT. AKT is fully activated upon phosphorylation of

serine 473 by the TORC2 complex of the mTOR protein kinase. In many cancers, PI-3k

P110alpha is mutated, which causes the kinase to be active, and its antagonist PTEN is

absent. Therefore, PI-3k activity contributes significantly to the cellular transformation and

the cancer development. Inhibition of PI-3k became a therapeutic strategy for suppressing

cancer development [279].

3.11 Plk1 expression

Polo-like kinase 1 (Plk1) is an enzyme consists of 603 amino acids. Besides the N-terminus

kinase domain, two conserved polo-box regions of 30 amino acids at the C-terminus can

regulates the kinase activity for auto-inhibition and sub-cellular localization [280]. Plk1 is an

early trigger for the G2/M transition. It is a proto-oncogene and is overexpressed in tumor

cells. Plk1 is believed to drive cell cycle progression, an oncogenic property. In nude mice,

tumor cells have been detected for Plk1 overexpression [281]. Plk1 appears to be involved in

the tumor suppressor p53 related pathways [282]. A recent review focused on Plk1, a key

regulator of mitosis, and its potential role in non-small cell lung cancer (NSCLC) anticancer

therapy [283].

3.12 Poly-ADP-ribosylation

Poly(ADP-ribosylation) is a post-translational modification of nuclear proteins that converts

β-NAD(+) into ADP-ribose. During the process, poly(ADP-ribose) polymerase (PARP)

enzyme is responsible for polymer synthesis to bind to nuclear acceptor proteins with the
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liberation of nicotinamide and protons, and poly(ADP-ribose)glycohydrolase (PARG)

enzyme regulates poly(ADP-ribose) turnover for polymer degradation to free ADP-ribose

and AMP. The most abundant PARP, PARP1, is a 113kDa zinc-finger protein with a

modular structure composed of the N-terminal DNA binding domain (DBD) essential for the

recognition of DNA breaks and the C-terminal catalytic domain required for the conversion

from NAD(+) to ADP-ribose. Poly(ADP-ribosylation) plays an important role in many basic

processes such as DNA replication, repair, and transcription while in sensing and repairing

DNA damage [284]. PARP normally acts as a pro-survival factor, due to its role in DNA

repair; yet, under massive DNA damage or stress conditions, PARP drives cells to necrosis

[285]. However, over-activation of PARP causes NAD depletion and consequent necrosis

followed by inflammatory condition. Therefore, inhibition of PARP could be protective in

cancer therapy, and inactivation of poly(ADP-ribosylation) could be utilized to limit cellular

injury and attenuate the inflammation.[285] Recently, many efforts have been showing

promising results through utilizing poly(ADP-ribosylation) pathway by using novel PARP

inhibitors, as summarized by Giansanti et al [285].

Besides, PARP has been reported to interact with NF-κB by PARP-1 acetylation. After

acetylation, NF-κB interacts with other proteins, binds DNA and activates the gene

transcription for inflammation, cell proliferation, differentiation, and death, and regulates the

production of pro-inflammatory cytokines, such as TNFα, MIP1α, IL-1, and IFNγ, as well

as iNOS [286-288].

3.13 Tumor angiogenesis inhibition

Angiogenesis is the physiological process involving the growth of new blood vessels from

pre-existing vessels. It is a fundamental step in the transition of tumors from a dormant to a

malignant state, leading to the use of angiogenesis inhibitors.

Tumor induces blood vessel growth by secreting various growth factors, such as vascular

endothelial growth factor (VEGF), which induce capillary growth into the tumor. In normal

cells, protein kinase G (PKG) limits beta-catenin, which solicits angiogenesis. Angiogenesis

is also a required step for the spread of tumor (metastasis). Therefore, using specific

compounds that inhibits or reduce the creation of new blood vessels may help to combat

tumor, which requires an abundance of oxygen and nutrients to proliferate. The fibroblast

growth factor (FGF) is a family of mostly single chain peptides [289]. FGF-1 stimulates the

proliferation and differentiation of all cell types, e.g., endothelial cells and smooth muscle

cells that are necessary for building arterial vessel, where VEGF drives the formation of new

capillaries [290]. VEGF causes a series of signaling cascade in endothelial cells. Binding to

VEGF receptor-2 (VEGFR-2) initiates tyrosine kinase signaling cascade that stimulates the

production of factors which stimulate vessel permeability by producing NO, proliferation/

survival, migration and finally differentiation into mature blood vessels. In normal cells,

anti-VEGF enzyme protein kinase G (PKG) limits beta-catenin, which solicits angiogenesis.

In cancer cells, it was found that cancer cells stop producing PKG [291].
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3.14 STAT 3 pathway

Signal transducer and activator of transcription 3 (STAT3) is a transcription factor that

mediates the expression of a variety of genes in response to cell stimuli, and thus plays a key

role in many cellular processes such as cell growth and apoptosis. It is activated through

phosphorylation of tyrosine 705 and serine 727 in response to cytokines and growth factors

such as interferons, epidermal growth factor, by receptor-associated kinases and then form

homo- or heterodimers that translocate to the cell nucleus. While GTPase RAC1 appears to

bind and regulate STAT3, PIAS3 protein is a specific inhibitor of this protein. In cancer

cells, constitutive STAT3 activation is associated with poor prognosis and has anti-apoptotic

and proliferative effects [292].

3.15 Wnt pathway

Wnt proteins are not only involved in normal physiological process in adult animals, but

also play roles in embryogenesis and cancer [293]. They consist of a group of secreted lipid-

modified (palmitoylation) signaling proteins of 350-400 amino acids in length [294], which

carry a conserved pattern of 23-24 cysteine residues on which palmitoylation occurs on a

cysteine residue [295]. These proteins activate various pathways (Wnt, β-catenin, cadherin,

etc.) in the cell including canonical and noncanonical Wnt pathways, and exert their

important roles in embryonic development, cell differentiation, and cell polarity generation

[296]. In canonical Wnt pathway, the Wnt proteins bind to cell-surface receptors of the

Frizzled family, cause the receptor to activate Dishevelled (DSH) family proteins and

ultimately change the amount of β-catenin that reaches the nucleus. DSH complex inhibits a

second complex of other proteins such as axin, GSK-3 and APC which normally promotes

the proteolytic degradation of the β-catenin. The β-catenin destruction inhibition allows

cytoplasmic β-catenin stabilization and entering the nucleus to interact with TCF/LEF

family transcription factors to promote specific gene expression. Therefore, modifications of

Wnt, APC, axin, and TCF are associated with carcinogenesis. For example, an APC

deficiency or mutations to β-catenin that prevent its degradation can cause excessive stem

cell renewal and proliferation, predisposing the cells to the formation of tumors [297]. Non-

steroidal anti-inflammatory drugs (NSAIDs) that interfere β-catenin signaling have been

shown to prevent colorectal cancer [298]. Other strategies in treating cancer cells include

using monoclonal antibodies against Wnt proteins to induce apoptosis [299].

3.16 Other mechnisms

Besides the mechanisms listed above, there are many other mechanisms not discussed. For

example, the extra-virgin olive oil may target the human epidermal growth factor receptor

(HER2) in breast cancer prevention [300], resveratrol may reduce hypoxia-induced

factor-1α and MMP-9 expression in colon cancer cells[171], lycopene may alter mevalonate

pathway and inactivate Ras signaling [301], and those in other recent reviews [302, 303].

Interested reader may find the references by searching related database.

4. Development Challenges, Opportunities, and Druggability

Many natural dietary phytochemicals have been selected for epidemiological, preclinical,

and early clinical studies for cancer prevention and treatment. These compounds typically
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involve multiple signaling transduction pathways. They themselves or their synthetic

analogues have profoundly guided continuing research to bring them into the market.

However, there are many developmental challenges that have to be overcome before their

druggability is fully established. Currently, there are 675 anti-cancer clinical studies

registered with www.clinicaltrials.gov (accessed Feb. 27, 2012) involving dietary

supplements with various statuses ranging from active, completed, terminated, or unknown.

The following natural plants and agents are in the clinical trials for anti-carcinogenesis:

ashwagandha, brassica, ginseng, tomato-soy juice, red and white wine; curcumin, DIM,

genistein, I3C, lutein, PEITC, quercetin, and sulforaphane [304].

4.1 Study approaches

Applying phytochemicals to cancer chemoprevention encourters an immediate challenge,

that is, how to prove their effect on human. As it is neither realistic nor feasible to design a

clinical study to prove that suppression of tumor in subjects is due to taking a phytochemical

for a long period of time, e.g., 30 years as cancer takes long time to initiate, to promote, and

to progress. Modern biotechnology provides an alternative approach: surrogate biomarkers.

Through innovative discovery research, such biomarkers can be effectively used to predict,

and to describe a lesion and to implement the treatment protocol, provided that the

biomarkers are thoroughly validated, qualitatively and ideally, quantitatively.

Animal studies may be the more practical chemoprevention research approach. Typically,

efficacy of the chemopreventive agents is established in nude mice first, then to better

understand the underlying molecular mechanisms, autochthonous, germ-line transgenic and

knockout animals may be used for such purpose [305]. Many animal models including

transgenic animal models have been well established to facilitate the researches in

phytochemicals. For example, transgenic adenocarcinoma of mouse prostate (TRAMP) mice

are genetically modified animal model for prostatic intraepithelial neoplasia that has been

used to study prostate cancer chemoprevention over the past years [306]. Our lab has

successfully conducted in vivo pharmacodynamic study of indole-3-carbinol [307],

curcumin [308], mixed tocotrienols [309], dibenzoylmethane [310], broccoli sprouts [196],

and γ-tocopherol-enriched mixed tocopherol [311]. Knockout rodent are another tool to
elucidate the role of a specific biomarker. However, it is necessary to understand that most

cancers are multi-factorial during its initiation, promotion, or progression and involve

multiple internal and external factors. Yet, knocking out a gene that exerts pleiotropic effects

or is central to the development of several cancers presents an invaluable model that offers a

mechanistic approach to cancer development and its chemoprevention. Nrf2 has been shown

to regulate the expression of more than 200 genes. Therefore, Nrf2 knockout mice have been

used to study the role of this transcript factor in the detoxifying and antioxidant genes. Our

lab used Nrf2 knockout mice and studied possible links between Nrf2 and anti-inflammation

effects using sulforaphane, docosahexaenoic acid and eicosapentaenoic acid among others

[190, 240, 312]. Cross-breeding to obtain double or triple knockout mice may also be

helpful to elucidate the underlying mechanisms. Thus, due to the significant relevance and

potential application to cancer chemoprevention research, animal model undoubtedly will

play a pivotal role to develop new chemopreventive phytochemicals or its synthetic

analogues.
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4.2 Chemical entity considerations

The chemical structures of the phytochemicals are now well understood and yet some of

their physical/chemical properties are not documented in literatures. Table 1 summarized the

most studied phytochemicals for their structures, and physical chemical properties predicted

by ACD/Labs software version 11.0. These data are provided for prediction purpose and

always need to be verified in the experiments. However, to enhance the druggability of

phytocemical, additional studies and drug developmental diligence are necessary to further

characterize their physical and chemical properties, e.g., to understand the chemicals’

degradation routes under different stability storage conditions so as to establish the products’

shelf life.

Potency has been one of the challenges the phytochemical researches are facing. Medicinal

scientists now use these phytochemicals as lead compounds to synthesize their analogues

based on the ever-enriching structure-property relationships. For example, although

curcumin has been shown to be an effective chemopreventive compound, its synthesis

analogue, EF24 demonstrated ~ 10-fold greater potency over its natural form [313].

4.3 Biopharmaceutics considerations

Bioavailability is another challenge needs to be overcome for many phytochemicals.

Another example of curcumin is that it shows low bioavailability in earlier studies. To

improve that, nanotechnology, liposomes, micelles, various coating materials, and

phospholipid complexes have been applied to increase its water solubility and to enhance its

bioavailability [314]. Genistein has limited bioavailability in earlier studies. Cohen et al

studied the effect of complexation of genistein with high-amylose corn starch and achieved

twice as high in genistein concentration in the plasma versus controls [315].

Phytochemicals’ crystal structures, polymorphism, amorphism, appropriate salt selection,

excipient comparability, etc. should be considered so as to develop a robust phytochemical

drug. The physical forms of a phytochemical may impact the solubility in various

physiological conditions, absorption, variation in pharmacokinetic performance, product

content consistency in large scale manufacturing, drug stability, degradation product

formation and pathway during product storage. Clas summarized the importance and

quantification approaches in characterizing the crystal form of the drug substance during

drug development [316].

Most drug products or nutrition supplements in oral dosage forms are tested in vitro using

United States Pharmacopeia (USP) Apparatus I or II to analyze the percent dissolved values

of the drug active ingredients in selected biorelevant dissolution media at a few sampling

time points. The dissolution test not only evaluates their potential bioavailability in vivo, but

also serves as a means to monitor the quality of the drug product after it is manufactured. It

is possible to establish a dissolution in vitro in vivo correlation by applying relevant

mathematical algorism with software such as WinNonlin® or GastroPlus™. Soh and Heng

updated the in vitro dissolution techniques of pharmaceutical solids recently [317].
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4.4 Bioavailability of orally dosed phytochemicals

Phytochemicals are naturally originated and many are components of daily foods. Therefore,

though not exclusively, studies have been emphasized on oral administration for the

phytochemicals. Dosing via oral route may show low bioavailability due to excessive

metabolism by Phase I and Phase II drug metabolism enzymes (DME). This may hamper the

phytochemicals from being available for absorption and distribution in the body. Phase I

drug metabolism enzymes include mostly cytochrome P450 and can be found in most tissues

of the body. They are invovlved in oxidation, reduction, or hydrolysis to increase the

polarity of a drug. An important aspect of phytochemicals is their ability to impact CYP

enzymes. Famous examples include grafefruit juice inhibit CYP3A4 mediated metabolism

of certain drugs and cause the increased bioavailability of the drug and potential toxicity

[318]. Other phytochemical related examples include watercress inhibites CYP2E1 which

may complicate the absorption of some drugs [319]. Therefore, phytochemicals have to be

studied for food effects.

Phase II drug metabolizing enzymes include conjugating enzymes for glucuronidation,

sulfation to increase the water solubility and excretability of a drug. Excessive metabolism

by Phase II DMEs may also relate to a drug’s poor bioavailability. Recent book chapter by

Tompkins et al on liver drug metabolism and bioavailability had an excellent discussion on

this topic [320].

4.5 Toxicity considerations

Although phytochemicals are extracted from natural plants and are generally considered

non-toxic, they can exert their toxicities to the animal or human systems at certain situation

(drug-drug interaction) and concentration, which impede their application in the clinical

studies and further application in chemoprevention and treatment. This involves another

major challenge: the controversy of the effects of the natural compounds. This controversy

may be due to synergistic effects existing in natural compounds when consumed as a whole

rather than a single extracted compound. Lambert et al analyzed benefits vs risks on possible

controversy over dietary polyphenols [321]. Some of the antioxidant activities of the natural

compounds demonstrated in vitro studies are not reproducible in vivo. Even in some

occasions, natural phytochemicals demonstrate hepatic and gastrointestinal toxicities, e.g.,

by green tea polyphenols (EGCG) at high doses [321-323]. Therefore, a thorough

understanding of the compounds and their pharmacological effects are essential for natural

phytochemicals’ drugability and their transition from bench top to patients’ bedside.

4.6 Regulatory considerations

An unavoidable question on phytochemical drugability is regulatory considerations. Thus

far, many phytochemicals are sold as dietary supplements in the market, which are governed

by relatively liberal regulations of the health authority (i.e., FDA) compared to those of

prescription drugs. FDA defines drug as: articles intended for use in the diagnosis, cure,

mitigation, treatment, or prevention of disease and articles (other than food) intended to

affect the structure or any function of the body of man or other animals. (FD&C Act section

201(g)(1)) (www.fda.gov). To be considered as a drug, the therapeutic claims need to be

studied and be approved by the health authority. In the contrast, a dietary supplement is
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available to consumers under the provisions of Dietary Supplement Health and Education

Act of 1994, for which the FDA has the burden of proving a dietary supplement is harmful

rather than requiring the manufacturer prove that the supplement is safe. Collins and

colleagues reviewed the clinically relevant differences between dietary supplement and

prescription formulations of omega-3 fatty acids in the context of legislative and regulatory

issues [324]. The prescription omega-3 (P-OM3, LOVAZA®), was approved as an adjunct

to diet to reduce triglyceride (TG) levels in adult patients with severe (≥ 500 mg/dL)

hypertriglyceridemia. Backed by 23 clinical studies, LOVAZA® won FDA’s approval in

2004.

5. Conclusion

Natural dietary phytochemicals have been widely used in in vitro, in vivo, and preclinical

cancer prevention and treatment studies. Some of these clinical trials have shown various

degrees of success. Through the extensive mechanistic studies, we have observed robust

chemopreventive effects by some of the phytochemicals. As cancer chemoprevention and

treatment using natural phytochemicals have been such an attractive approach, further

efforts are fully justifiable to thoroughly understand their potencies, pharmacokinetic

performances, pharmacodynamic responses, metabolisms, toxicities, drug-drug interactions,

polymorphisms, and then formulations, stabilities and degradations, and dosage regimens.

Natural dietary phytochemicals have been and will continue to be a promising and active

research area in the near future.

Abbreviations

ABCG2 ATP-binding cassette sub-family G member 2

ACF aberrant crypt foci

Ah aryl hydrocarbon

ALP alkaline phosphatase

AMPK AMP-activated protein kinase

AOM azoxymethane

AP-1 activator protein 1

Apaf-1 apoptotic protease activating factor-1

ARE antioxidant response element

BaP benzo[a]pyrene

Bcl-2 B-cell lymphoma 2

BCRP breast cancer resistance protein

BITC benzyl isothiocyanates

BRCA1 breast cancer type 1 susceptibility protein 1

C3G cyaniding-3-O-glucoside
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CD chromodomain

CDK4 cyclin-dependent kinase 4

CHD chromodomain helicase DNA-binding protein

COX-2 cyclooxygenase-2

CYP cytochrome P450

DDR DNA damage response

DHC dihydrochalcone

DISC death-inducing signaling complex

DIM diindolylmethane

DR death receptor

DSH Dishevelled

DSS dextran sulfate sodium

EGCG epigallocatechin gallate

EGFR epidermal growth factor receptor

ER estrogen receptor

ERK extracellular signal-regulated kinases

FAK focal adhesion kinase

FoxM1 Forkhead box protein M1

GAPDH glyceraldehydes 3-phosphate dehydrogenase

GCLC glutamate-cysteine ligase catalytic subunit

GSH glutathione

GSTm2 glutathione S-transferase Mu 2

HDAC histone deacetylase

HER2 human epidermal growth factor receptor

HO-1 hemeoxygenase-1

HSP heat shock protein

HTRF homogenous time resolved fluorescence

HUVEC human umbilical vein endothelial cells

I3C indole-3-carbinol

IAP inhibitor of apoptosis proteins

IC50 half maximal inhibitory concentration

IFN interferon
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IL-1β interleukin-1 beta

IL-6 interleukin-6

IKK IκB kinase

iNOS inducible nitric oxide synthase

JNK c-Jun N-terminal kinases

LNCaP lymph node carcinoma of the prostate

LPO lipid peroxidation

LPS lipopolysaccharide

MAC mitochondrial apoptosis-induced channel

MAPK mitogen-activated protein kinase

MBD4 methyl-CpG-binding domain protein 4

Mcl-1 myeloid cell leukemia sequence 1

MDCK Madin-Darby canine kidney

Mitf microphthalmia-associated transcription factor

MKK mitogen-activated protein kinase kinase

MMP matrix metalloproteinase

MNU N-methyl nitrosourea

MOMPP mitochondrial outer membrane permeabilization pore

mTOR mammalian target of rapamycin

NF-κB Nuclear factor-kappa-B

NQO1 NAD(P) dehydrogenase (quinone 1)

Nrf2 nuclear factor-erythroid 2-related factor 2

PARP poly (ADP-ribose) polymerase

PCa prostate cancer

PCNA proliferating cell nuclear antigen

PEITC phenyl isothiocyanate

PGE prostaglandin E

PI3K phosphoinositide 3-kinase

PKG protein kinase G

PLK1 polo-like kinase 1

PTEN phosphatase and tension homolog

PUFA polyunsaturated fatty acids
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q-PCR quantitative real time-polymerase chain reaction

RISC RNA-induced silencing complex

ROS reactive oxygen species

RPE retinal pigment epithelial

RT-PCR reverse transcription polymerase chain reaction

SFN sulforaphane

SHH sonic hedgehog

SOD1 superoxide dismutase 1

SMAC small mitochondrial-derived activator of caspases

SMRT silencing mediator of retinoid and thyroid-hormone receptors

STAT signal transducer and activator of transcription

TCF T-cell factor

TIMP tissue inhibitor of metalloproteinases

TNBS 2,4,6-trinitrobenzenesulfonic acid

TNF-α tumor necrosis factor alpha

TRAMP transgenic adenocarcinoma of mouse prostate

TUNEL terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling

UGT1A1 UDP glucuronosyltransferase 1 family, polypeptide A1

u-PA urokinase-type plasminogen activator

UVB ultraviolet B

VDR vitamin D receptor

VEGF vascular endothelial growth factor

XIAP X-linked inhibitor of apoptosis protein
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Figure 1.
Regulation of Nrf2-mediated gene transcription by phytochemicals. Under homeostatic

condition, Nrf2 is retained in the cytoplasm by Keap1 protein. Chemopreventive

phytochemicals interact directly with the cysteine residues of Keap1 to trigger the release

Nrf2 from the complex. Chemopreventive agent-generated electrophiles or reactive oxygen

species can activate a wide variety of kinase signaling pathways, including PI3K, PKC,

MAPK, all of which can trigger the release and translocation of Nrf2 from cytosal to

nuclear.
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